

Edition 1.0 2021-05

INTERNATIONAL STANDARD

BASIC SAFETY PUBLICATION

Fire hazard testing – Part 11-11: Test flames – Determination of the characteristic heat flux for ignition from a non-contacting flame source

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 13.220.40; 29.020

ISBN 978-2-8322-9835-0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWO	DRD	4
INTRODU	JCTION	6
1 Scop	pe	7
2 Norr	native references	7
3 Tern	ns and definitions	8
	ciple of the test	
	aratus	
• •		
5.1 5.2	Test arrangement Burner and test flame	
5.2 5.3	Heat flux meter	
5.3 5.4	Data acquisition system	
5.4 5.5	Heat flux meter mounting board	
5.6	Masking board	
5.0 5.7	Timing device	
	5	
5.8	Conditioning chamber	
5.9	Test specimen support	
5.10 5.11	Burner support	
••••	Observation mirror	
5.12	Flow controller	
5.13	Heat flux meter supporting device	
	specimen	
6.1	Dimensions of test specimen	
6.2	Testing ranges in formulations	
6.2.1		
6.2.2		
6.2.3		
6.3	Conditioning of test specimens	
7 Test	ing conditions	14
8 Test	procedure	14
8.1	Determination of incident heat flux calibration curve	14
8.2	Determination of ignition time	15
8.3	Repetition of the test at different heat flux values	16
9 Eval	uation of test results	16
9.1	Average ignition time $\bar{t}_{i\sigma}$	16
-		
9.2	Report format for CHFI	
9.3	Analysis on CHFI (optional)	
	ision data	
	report	17
versus th	(informative) An example of the calibration curve of incident heat flux, <i>Q</i> , e distance, <i>D</i> , between the top of the burner tube and the lower surface of the imen	18
A.1	Calibration curve	
	(informative) Examples of ignition times with various materials of 3 mm	10
		20
B.1	Materials – Examples of measurements	
	(informative) Precision data	
		20

C.1	General	23
C.2	Heat flux versus distance at different gas flow rates	
C.3	Repeatability	
C.4	Calculations and plots	
	(informative) Method of positioning the heat flux meter	
D.1	General	
D.2 Bibliogra	Positioning the heat flux meter phy	
Dibilogra	priy	
Figure 1	 Arrangement and position of test specimen and burner 	10
Figure 2	 Heat flux meter mounting board 	11
Figure 3	 Structure of the masking board 	12
Figure 4	 Heat flux meter supporting device 	13
Figure A	1 – Calibration curve (example)	18
Figure B.	1 – Example of ignition times of PMMA	20
Figure B.	2 – Ignition times for ABS (example)	21
Figure B.	3 – Ignition times for HIPS (example)	21
Figure C	.1 – Incident heat flux calibration curve (gas flow rate 105 cm ³ /min)	23
Figure C	.2 – Incident heat flux calibration curve (gas flow rate 160 cm ³ /min)	24
Figure C	.3 – Plot of 1/ t_{ig} for material A	
Figure C	.4 – Plot of $1/t_{ig}$ for material B	
Figure C	5 – Plot of 1/ t_{ig} for material C	
Figure C	.6 – Plot of 1/ t_{ig} for material D	
Figure D	.1 – Positioning the heat flux meter	
Figure D	2 – Correct position of the test specimen support and the heat flux meter	29
Tabla A	1 – Calibration data (examples of actual measured data as shown	
	A.1)	
Table A.2	2 – Calibration data (examples of interpolated values)	
Table B.	1 – Value of Figure B.1	20
Table B.2	2 – Value of Figure B.2	21

Table B.3 – Value of Figure B.3	22
Table B.4 – Description example of tabulated test results	
Table C.1 – Precision data of ignition time	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIRE HAZARD TESTING –

Part 11-11: Test flames – Determination of the characteristic heat flux for ignition from a non-contacting flame source

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60695-11-11 has been prepared by IEC technical committee 89: Fire hazard testing.

It has the status of a basic safety publication in accordance with IEC Guide 104 and ISO/IEC Guide 51.

The text of this International Standard is based on the following documents:

CDV	Report on voting
89/1482/CDV	89/1507/RVC

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

This international standard is to be used in conjunction with IEC 60695-11-4.

A list of all the parts in the IEC 60695 series, under the general title *Fire hazard testing*, can be found on the IEC website.

Part 11 consists of the following parts:

- Part 11-2: Test flames 1 kW nominal pre-mixed flame Apparatus, confirmatory test arrangement and guidance
- Part 11-3: Test flames 500 W flames Apparatus and confirmational test methods
- Part 11-4: Test flames 50 W flame Apparatus and confirmational test method
- Part 11-5: Test flames Needle-flame test method Apparatus, confirmatory test arrangement and guidance
- Part 11-10: Test flames 50 W horizontal and vertical flame test methods
- Part 11-11: Test flames Determination of the characteristic heat flux for ignition from noncontacting flame source
- Part 11-20: Test flames 500 W flame test methods
- Part 11-30: Test flames History and development from 1979 to 1999
- Part 11-40: Test flames Confirmatory tests Guidance

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

In the design of any electrotechnical product, the risk of fire and the potential hazards associated with fire need to be considered. In this respect the objective of component, circuit and equipment design as well as the choice of materials is to reduce, to acceptable levels, the potential risks of fire even in the event of foreseeable abnormal use, malfunction or failure. IEC 60695-1-10, IEC 60695-1-11 and IEC 60695-1-12 provide guidance on how this is to be accomplished.

Fires involving electrotechnical products can be initiated from external non-electrical sources. Considerations of this nature are dealt with in an overall fire hazard assessment.

The aim of the IEC 60695 series of standards is to save lives and property by reducing the number of fires or reducing the consequences of the fire. This can be accomplished by

- trying to prevent ignition caused by an electrically energised component part and, in the event of ignition, to confine any resulting fire within the bounds of the enclosure of the electrotechnical product.
- trying to minimise flame spread beyond the product's enclosure and to minimise the harmful
 effects of fire effluents including heat, smoke and toxic or corrosive combustion products.

This international standard is to be used to measure and describe the properties of materials used for electrotechnical products and sub-assemblies in response to heat from a noncontacting flame source or heat source under controlled laboratory conditions which is characterized by quantitative heat input (heat flux) to the materials. Results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. A test specimen cut from an end-product or sub-assembly can be tested by this test method.

This international standard may involve hazardous materials, operations, and equipment. It does not purport to address all of the safety problems associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Test methods to determine flammability by contact of flame have been developed and standardized already, such as IEC 60695-11-5 [1]¹, IEC 60695-11-10 [2], IEC 60695-11-20 [3] and ISO 4589-2 [4].

This is the first test method to determine the characteristic heat flux for ignition (CHFI) of materials used for electrotechnical products, sub-assemblies or parts from a non-contacting flame source. CHFI characterizes ignition behaviour in terms of incident heat flux. This test method simulates the fire behaviour of materials used for electrotechnical products where a flame source or heat source exists close to, but does not contact with, these items. An example is a candle flame near an electrotechnical product.

¹ Numbers in square brackets refer to the bibliography.

FIRE HAZARD TESTING -

Part 11-11: Test flames – Determination of the characteristic heat flux for ignition from a non-contacting flame source

1 Scope

This part of IEC 60695 describes a test method used to determine the characteristic heat flux for ignition (CHFI) from a non-contacting flame source for materials used in electrotechnical products, sub-assemblies or their parts. It provides a relationship between ignition time and incident heat flux. A test specimen cut from an end-product or sub-assembly can be tested by this test method.

This part of IEC 60695 can be used in the fire hazard assessment and fire safety engineering procedures described in IEC 60695-1-10, IEC 60695-1-11 and IEC 60695-1-12.

This basic safety publication is intended for use by technical committees in the preparation of standards in accordance with the principles laid down in IEC Guide 104 and ISO/IEC Guide 51.

One of the responsibilities of a technical committee is, wherever applicable, to make use of basic safety publications in the preparation of its publications. The requirements, test methods or test conditions of this basic safety publication will not apply unless specifically referred to or included in the relevant publications.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60695-1-10, Fire hazard testing – Part 1-10: Guidance for assessing the fire hazard of electrotechnical products – General guidelines

IEC 60695-1-11, Fire hazard testing – Part 1-11: Guidance for assessing the fire hazard of electrotechnical products – Fire hazard assessment

IEC 60695-1-12, Fire hazard testing – Part 1-12: Guidance for assessing the fire hazard of electrotechnical products – Fire safety engineering

IEC 60695-4, Fire hazard testing – Part 4: Terminology concerning fire tests for electrotechnical products

IEC 60695-11-4, Fire hazard testing – Part 11-4: Test flames – 50 W flame – Apparatus and confirmational test method

IEC GUIDE 104, The preparation of safety publications and the use of basic safety publications and group safety publications

ISO/IEC Guide 51, Safety aspects – Guidelines for their inclusion in standards

ISO 13943:2017, *Fire safety – Vocabulary*

ISO 291, Plastics – Standard atmospheres for conditioning and testing

ISO/TS 14934-4, Fire tests – Calibration of heat flux meters – Part 4: Guidance on the use of heat flux meters in fire tests